Содержание
- Как посчитать площадь стен
- Инструменты для подсчета квадратных метров
- Как рассчитать площадь прямоугольных стен
- Как правильно рассчитать площадь стен со сложной поверхностью
- Расчет площади стен дома на калькуляторе
- Советы и рекомендации
- Как считать площадь поверхности
- Расчет площади пола и стен нужны при перепланировке
- Как рассчитать площадь комнаты — задача для первоклассников
- Как рассчитать площадь потолков и стен
- Формулы площади поверхности тел
- Формулы объёма и площади поверхности. Многогранники.
- Получи пятерку
- Как пользоваться?
Как считать площадь поверхности
Как посчитать площадь стен
Начиная ремонт, первым делом нужно определить необходимое количество строительных материалов. Провести расчеты могут специалисты, которые будут выполнять работы. Но они часто делают вычисления с большой погрешностью в свою пользу. Рассмотрим, как самостоятельно посчитать площадь стен.
Инструменты для подсчета квадратных метров
Для расчетов понадобятся:
- уровень строительный;
- рулетка с ограничителем;
- длинная линейка и угольник;
- карандаш и бумага;
- калькулятор.
Для нанесения размеров нарисуем схему комнат. Обозначим двери, окна, ниши, выступы. Результаты замеров нанесем на чертеж.
Как рассчитать площадь прямоугольных стен
Измеряем высоту (h), длину (a), ширину (b).
Площадь: S = P × h
Периметр: P = (a + b) × 2
Вдоль плинтуса измеряем длину и ширину помещений.
Высоту — по вертикальному углу.
Р = (5 + 4) × 2 = 18 м;
Как правильно рассчитать площадь стен со сложной поверхностью
Не все помещения имеют строгую прямоугольную форму. В зданиях часто присутствуют замысловатые архитектурные элементы, усложняющие расчет.
Как посчитать квадратуру стен за вычетом проемов
При определении точного объема работ, вычтем размеры окон и дверей из общего количества квадратных метров стен комнаты. Для этого по краю рамы замеряем ширину и высоту окна, по краю коробки — габариты двери.
Перемножив длину и ширину проемов, получаем размер, который необходимо вычесть.
Аналогично действуем, если из подсчитываемой квадратуры комнаты нужно исключить печи, камины, радиаторы.
В помещении имеется окно 2,5 м × 1,5 м и дверь 0,9 м × 2,1 м.
S окна равна 2,5 × 1,5 = 3,75 м².
S двери равна 0,9 × 2,1 = 1,89 м².
S стен за вычетом проемов составляет 54 − 3,75 − 1,89 = 48,36 м².
Определение площади помещений неправильной формы
Для определения периметра зданий любых конфигураций сложим длины всех стен, включая выступы и ниши.
Проводить измерения помещений неправильной формы можно, разбив поверхность на несколько простых фигур.
Если у вас комната с прямоугольным выступом, вы имеете две фигуры, квадратуру которых легко вычислить, затем сложить.
Если элемент содержит в себе полукруг, для расчета нужно разбить его на полукруг и прямоугольник.
Как считать квадратные метры стен с круглыми элементами
Встречаются круглые и полукруглые жилые здания или строения с элементами окон или дверей в виде арки.
Их периметр можно определить, умножив диаметр на число π (Пи) = 3,14.
Квадратуру вертикальных поверхностей определяем, умножив полученное значение на высоту от пола до потолка.
S круга равна квадрату радиуса, умноженному на число π; полукруга — половине этой величины.
Если необходимо из квадратуры комнаты вычесть площадь круглых колонн или полукруглых выступающих элементов, при невозможности измерить диаметр или радиус, измеряем длину окружности (P) и применяем формулу: S = P² / 4π.
Как рассчитать квадратные метры конструкций в виде треугольника
В случае наличия комнаты с треугольными элементами, мы можем применить несколько формул, в зависимости от вида фигур:
Где a, b, c — длины сторон треугольника; p — периметр.
Объем помещения
Для определения объема необходимо высчитать площадь пола, и полученный показатель перемножить на высоту. V = S × h.
Расчет площади стен дома на калькуляторе
Существенно облегчат расчеты специальные программы, к которым относится строительный калькулятор в онлайн-версии.
Чтобы посмотреть, сколько квадратных метров составляют стены за вычетом проемов, достаточно выбрать геометрическую форму помещения и ввести показатели:
- ширину;
- длину;
- высоту;
- количество проемов;
- размеры окон и дверей.
Строительный калькулятор рассчитает количество отделочных материалов, необходимых для вашего ремонта.
Советы и рекомендации
Необходимо помнить, что геометрические параметры зданий редко могут быть идеальными. Поэтому для определения точных величин замеры лучше производить в нескольких местах, а затем выводить среднее арифметическое. Например, рассчитывая площадь комнаты по стенам, длину лучше измерять по потолку, плинтусу и в середине вертикальной плоскости. Высоту — в углах и середине стены по отвесу.
Чтобы вычислить периметр при наличии множества выступов и ниш разных форм, необходимо проложить вдоль всех элементов шнур, затем измерить его рулеткой.
Подсчитав точные параметры, можно идти в магазин за строительными материалами. Лучше показать схемы с нанесенными размерами продавцу-консультанту. Специалист поможет рассчитать расход материалов с учетом нахлеста, подбора рисунка обоев или потерь при резке плитки.
Как считать площадь поверхности
Задание 8_1. Найдите площадь поверхности многогранника, изображенного на рисунке (все двугранные углы прямые).
Площадь поверхности многогранника можно вычислить как сумму площадей всех его граней. Причем площади передней и задней граней, равны
,
и вся площадь поверхности равна
Задание 8_2. Найдите площадь поверхности многогранника, изображенного на рисунке (все двугранные углы прямые).
Найдем площадь поверхности как площадь поверхности прямоугольного параллелепипеда со сторонами 3, 3, 5 и вычтем площади двух граней 1х1 прямоугольного параллелепипеда со сторонами 1, 1 и 3 (см. рисунок).
Площадь поверхности большого параллелепипеда, равна
.
Площади двух граней 1х1 малого параллелепипеда, равны:
,
и площадь поверхности фигуры
.
Задание 8_3. Найдите площадь поверхности многогранника, изображенного на рисунке (все двугранные углы прямые).
Из рисунка видно, что площадь поверхности фигуры будет меньше площади прямоугольного параллелепипеда со сторонами 3, 4 и 5 на площади двух квадратов, размером 1х1, имеем:
.
Задание 8_4. Найдите площадь поверхности многогранника, изображенного на рисунке (все двугранные углы прямые).
Можно заметить, что площадь поверхности данной фигуры будет в точности совпадать с площадью поверхности прямоугольного параллелепипеда со сторонами 5, 3 и 5 и равна
.
Замечание. Не путайте вычисление объема фигуры и площади его поверхности!
Задание 8_5. Найдите площадь поверхности многогранника, изображенного на рисунке (все двугранные углы прямые).
Площадь поверхности данной фигуры равна площади поверхности прямоугольного параллелепипеда со сторонами 3, 5 и 4, и равна
.
Замечание. Не путайте вычисление объема фигуры и площади его поверхности!
Задание 8_6. Найдите площадь поверхности многогранника, изображенного на рисунке (все двугранные углы прямые).
Площадь поверхности данной фигуры можно вычислить как площадь поверхности прямоугольного параллелепипеда со сторонами 4, 4 и 6 плюс две грани 1х4 площадью 4 (см. рисунок) и минус две грани площадью 2х1 (они вычитаются из оснований). Таким образом, площадь фигуры равна
.
Задание 8_7. Найдите площадь поверхности многогранника, изображенного на рисунке (все двугранные углы прямые).
Площади нижней и верхней граней равны , площади боковых граней можно вычислить как
, площади передней и задней граней соответственно
и еще нужно учесть две площади внутренней нижней и верхней граней
. Таким образом, вся площадь поверхности фигуры равна
Задание 8_8. Найдите площадь поверхности многогранника, изображенного на рисунке (все двугранные углы прямые).
Площадь поверхности фигуры можно вычислить как площадь поверхности прямоугольного параллелепипеда со сторонами 4, 3 и 2, минус четыре площади боковых квадратов, размером 1х1. Имеем:
.
Задание 8_9. Найдите площадь поверхности многогранника, изображенного на рисунке (все двугранные углы прямые).
На рисунке изображен прямоугольный параллелепипед с вырезом. Площадь поверхности такой фигуры будет равна площади поверхности всего параллелепипеда со сторонами 5, 7 и 1 минус две площади фронтального выреза площадью 2х1=2 и плюс четыре площади внутренних сторон выреза размерами 1х1 и 2х1. Таким образом, вся площадь поверхности многогранника равна
Задание 8_10. Найдите площадь поверхности многогранника, изображенного на рисунке (все двугранные углы прямые).
Площадь поверхности многогранника можно найти как сумму площадей двух прямоугольных параллелепипедов со сторонами 5, 4, 3 и 3, 2, 3 минус две площади основания нижнего параллелепипеда площадью 2х3 (две площади, т.к. она будет дважды учтена в большом и малом параллелепипедах). Таким образом, получаем:
Задание 8_11. Найдите площадь поверхности многогранника, изображенного на рисунке, все двугранные углы которого прямые.
Найдем площадь поверхности фигуры как площадь прямоугольного параллелепипеда со сторонами 2, 2, 1 и вычтем две площади граней 1х1 во фронтальных плоскостях (передней и задней), получим:
Задание 8_12. Найдите площадь поверхности пространственного креста, изображенного на рисунке и составленного из единичных кубов.
Площадь поверхности данной фигуры можно найти как сумму площадей поверхности 6 кубов минус площадь поверхности одного куба (тот что внутри и эти грани не входят в площадь поверхности), получаем:
Задание 8_13. Найдите площадь поверхности многогранника, изображенного на рисунке (все двугранные углы прямые).
Найдем площадь поверхности этого многогранника как сумму площадей поверхности большого (6х6х2) и малого (3х3х4) прямоугольных параллелепипедов и вычтем дважды площадь поверхности соприкосновения граней этих параллелепипедов, которая имеет размер 3х4, получим:
Задание 8_14. Найдите площадь поверхности многогранника, изображенного на рисунке (все двугранные углы прямые).
Площадь поверхности этого многогранника можно найти как сумму площадей поверхности каждого из трех параллелепипедов размерами 2х5х6, 2х5х3 и 2х3х2 минус удвоенные площади соприкосновения этих параллелепипедов, то есть минус удвоенные площади двух граней размерами 3х5 и 2х3 соответственно. В результате получаем площадь поверхности фигуры:
Задание 8_15. Через среднюю линию основания треугольной призмы, проведена плоскость, параллельная боковому ребру. Найдите площадь боковой поверхности призмы, если площадь боковой поверхности отсеченной треугольной призмы равна 37.
Так как плоскость сечения проведена через среднюю линию, то она делит боковую плоскость пополам. Следовательно, площадь боковой поверхности большей призмы в 2 раза больше площадь боковой поверхности малой призмы и равна 74.
Расчет площади пола и стен нужны при перепланировке
Площадь помещений (полов, стен, потолков) — вовсе не праздная информация. Она необходима для составления экспликации, кадастровых планов жилья, перепланировки и ремонта. Очень часто требуется посчитать количество строительного материала — паркета, ламината, обоев, гипсокартона, плитки и др. В многоквартирных домах стандартных проектов площадь всех помещений — это давно известные цифры. Поэтому если есть дома техническая документация жилья, наверняка в нем отыщется и экспликация со схемой вашего жилища, откуда можно просто переписать все нужные цифры. Но если документов нет, они находятся у собственника, а жильё снято по договору аренды или безвозмездного пользования? Ничего страшного в этом нет. У большинства такой вопрос, как измерить площадь, не вызовет никакого затруднения. Если вы его задаёте, то скорее всего вообще не учились в школе.
Как рассчитать площадь комнаты — задача для первоклассников
Что может быть проще расчета площади прямоугольника? Ведь это самая первая и простая задача из учебника геометрии для первого класса.
Площадь геометрической фигуры (а большинство потолков и прямоугольников в квартирах — это прямоугольники) равна произведению двух его сторон (а и b): S = a * b. Единица измерения длины — метр, следовательно, площадь измеряется в метрах квадратных (м 2 ).
- Измерение проводим при помощи строительной рулетки с фиксатором, желательно у плинтусов, так как если будем делать это посредине комнаты, может получиться погрешность. Желательно присутствие помощника, который будет придерживать один конец рулетки. В противном случае можно закрепить её каким-то тяжёлым предметом или зацепить за край плинтуса.
- Если длина измеряющей ленты недостаточна, замер придётся проводить поэтапно, фиксируя ленту и проставляя метки. Затем суммируем участки длины по проставленным меткам и получаем общий размер.
Например, длина комнаты 5 м, а ширина — 4 м. Перемножим эти две цифры, получаем площадь комнаты — 20 м 2 .
Как измерить площадь помещения с нишей
Усложним задачу: допустим в помещении имеется прямоугольная ниша. В этом случае разбиваем комнату на два прямоугольника большой и маленький. Измерить нужно будет две стороны большого и две стороны маленького прямоугольника:
- длину меньшей стороны комнаты (расстояние до ниши) а1;
- ширину комнаты — b1;
- длину и ширину ниши а2 и b2 .
Площадь комнаты будет равно сумме найденных площадей двух прямоугольников: S = а1* b1 + а2 * b2.
Рассчитаем площадь комнаты на рисунке ниже.
Здесь: а1 = 4.35 м; b1 = 5 м; а2 = 2.65 м; b2 = 2.5 м.
S = 4.35 * 5 + 2.65 * 2.5 =21.75 +6.625 = 28.375 м 2 .
Как рассчитать площадь комнаты любой формы
Принцип расчета одинаков для помещений любой формы:
Комнату необходимо разбить на простейшие геометрические фигуры, площади которых вычисляются по известным формулам, затем сложить площади этих фигур. Порой производится обратная операция — из общей S вычитаются S фигур: например, из S прямоугольника нужно вычесть S оснований колонн.
Для вычислений достаточно знать следующие формулы:
- S прямоугольника = a * b (1), здесь и далее а и b — длина и ширина помещения.
- S прямоугольного треугольника (это половина прямоугольника), то есть S треуг. = a * b /2 (2);
- S круга = π*r 2 (или π*d 2 / 4) (3) , где π = 3.14, r и d — радиус и диаметр окружности;
- S полукруга = π*r 2 /2 (4);
- S трапеции с основаниями а, b и высотой h: S трап. = (а + b)/2 * h (5).
Как рассчитать площадь потолков и стен
Площадь потолка обычно равна площади пола, за исключением многоуровневых потолков, поэтому отдельно её вычислять не требуется.
S стен необходима чаще всего для определения количества керамической плитки или рулонов обоев.
- Если обоями или плиткой закрывается все стены, то проще вначале рассчитать общий периметр помещения Р, сложив все длины его стен. Р = 2 * (а + b).
- Затем Р нужно умножить на высоту стен h. Получаем суммарную площадь всех стен S.
- Теперь из S стен вычитает S окон и дверного проема, предварительно рассчитанных по формуле (1).
Таким образом S под отделку определяется по такой формуле: S отд. = (2 * (а + b) * h) — S окон — S дверей (6).
Если производится частичная отделка, то рассчитывается площадь поверхности стены, предназначенной для отделки.
Пример, как найти площадь S отд. для стены с дверью:
S отд. = S стены – S двери = 4 * 2.7 – 1 * 2.1 = 8.7 м 2 .
Как высчитать, сколько нужно плитки для фартука
- Чтобы выложить фартук из плитки на кухне, нужно вначале произвести его разметку и замерить длину и высоту.
- Затем по ф‑ле (1) рассчитываем площадь фартука.
- Для расчета количества плитки необходимо S фартука разделить на S одной плитки: N пл. = S фарт. / S пл. одной плитки (7).
- К расчётному количеству N нужно прибавить ещё 5 — 10%, с учётом нарезки угловых плиток и неизбежного части материала в расход (часть плитки бракуется плиткорезом).
То есть итоговое количество будет равно: N итог. = N пл. + N пл. * (0.05 — 0.1) (8).
Количество плитки для ванной, если ею закрываются все стены, рассчитывается по методу, описанному выше:
- по формуле (6) рассчитываем S отделочной поверхности стен.;
- по ф‑лам (7) и (8) — количество плитки.
Как посчитать количество обоев
Расчёт необходимого количества обоев более сложен, так как необходимо учитывать:
Количество рулонов считают двумя способами:
- по площади стен;
- по периметру помещения и количеству полотен.
Существуют готовые таблицы расчетов обоев.
Первый способ расчета
Первый способ простой, но он весьма приблизительный, поэтому приходится покупать обои с большим запасом, что неэкономно.
- Рассчитывается площадь поверхности отделки S отд. за вычетом окон и дверей — по ф‑ле (6).
- Определяется площадь одного рулона: длина рулона умножается на его ширину. Например, если в рулоне шириной 60 см 10 метров полотна, то S одного рулона будет 6 м 2 .
- Затем делим S отд. на S одного рулона, и полученную цифру округляем до целого числа.
- Прибавляем один — два рулона в запас.
Второй способ расчета
Второй способ более точен и экономен, но и более сложен:
- Высчитываем периметр части помещения Р, без оконных и дверных проемов, на которые пойдут целые полотна.
- Определяем длину одного целого полотна l ц.: к высоте помещения (обычно 2.60 м) прибавляем запас на узор 0.5 м и на отрез — 0.1 м.
- Высчитываем количество целых полотен N ц., разделив Р на l ц.
- Теперь рассчитаем такими же способами длину l к. и количество N к. кусков полотен над окнами, дверями и под окнами.
- Определяем общий метраж целых полотен L ц. = N ц. * l ц.
- Высчитываем, сколько всего метров будет вырезанных кусков L к. = N к. * l к.
- Рассчитываем общую длину полотен: L общ. = L ц. + L к.
Теперь необходимо посчитать сколько всего рулонов нужно. Для это поделим L общ. на длину одного рулона, а полученную цифру округлим в сторону увеличения.
При сравнении обеих способов расчета обычно наблюдается разница в один рулон. Если не хочется мучиться со вторым методом, можно поступить проще: определить количество рулонов по первому способу и добавить про запас не два рулона, а один.
Произведя расчет обоев, можно сравнить теперь полученную цифру с табличной.
Таким образом решение простой задачи как посчитать площадь помещения представляет не только практический интерес, но и является неплохой тренировкой для мозга. Самостоятельный расчет количества отделочного материала позволяет не допустить его перерасход.
Формулы площади поверхности тел
Площадь поверхности геометрической фигуры измеряется в квадратных единицах. Очень часто используется в повседневной жизни, в строительстве, на производствах. Например, нужно вам покрасить комнату, зная сколько краски используется на кв. метр, и площади стен комнаты легко можно вычислить, сколько всего вам нужно купить краски.
Различают два вида площадей поверхности тел: Sбок — площадь боковой поверхности тела, и Р — площадь полной поверхности тела, которая равна сумме площадей боковой поверхности и основания тела.
Формула площади поверхности призмы
Площадь боковой поверхности прямой призмы равна периметру основания умноженному на высоту призмы (высота=боковому ребру).
р — периметр основания;
h — высота;
l — боковое ребро.
Формула площади поверхности куба
Площадь боковой поверхности куба равна числу боковых граней умноженному на квадрат ребра.
Площадь полной поверхности куба равна числу всех граней куба умноженному на квадрат ребра.
P = 6a 2
а — ребро куба.
Формула площади поверхности пирамиды
1) Правильная пирамида:
Sбок = 1/2pA
p — периметр основания;
A — апофема.
S — площадь основания;
φ — угол между боковой гранью и основанием пирамиды.
Sбок = Sгр n
Sгр — площадь одной боковой грани;
n — количество боковых граней пирамиды.
2) Правильная усеченная пирамида:
A — апофема.
Р — площадь полной поверхности правильной усеченной пирамиды;
Sбок — площадь боковой поверхности правильной усеченной пирамиды;
Формула площади поверхности цилиндра
Sбок = 2πrh = πdh
P = 2πr 2 +2πrh = 2π(r+h)
P — площадь полной поверхности цилиндра;
r — радиус цилиндра;
d — диаметр цилиндра;
h — высота цилиндра.
Формула площади поверхности конуса
1) Прямой круговой конус:
P = πr 2 + πrl= πr(r+l)
P — площадь полной поверхности конуса;
r -радиус конуса;
d -диаметр конуса;
l — образующая конуса.
2) Усеченный прямой круговой конус:
P — площадь полной поверхности усеченного конуса;
d1, d2 — диаметры оснований усеченного конуса;
l — образующая усеченного конуса.
Формула площади поверхности шара (сферы)
Шар — тело, созданное вращением полукруга вокруг диаметра.
Сфера — поверхность шара.
Формула площади поверхности сферического сегмента
Сферический сегмент — часть сферы, что отсекается от сферы плоскостью.
Формула площади поверхности шарового сегмента
Шаровой сегмент — часть шара, что отсекается от шара плоскостью, и ограничивается кругом (основание шарового сегмента) и сферическим сегментом.
Sшар. сегм. = π(2Rh+a 2 )=π(h 2 +2a 2 )
R — радиус шара;
D — диаметр шара;
h — высота сегмента;
a — радиус основания сегмента.
Формулы объёма и площади поверхности. Многогранники.
Изучение стереометрии начинается со знания формул. Для решения задач ЕГЭ по стереометрии нужны всего две вещи:
- Формулы объёма — например, объём куба, объём призмы, объем пирамиды — и формулы площади поверхности.
- Элементарная логика.
Все формулы объёма и формулы площади поверхности многогранников есть в нашей таблице.
Ты нашел то, что искал? Поделись с друзьями!
Проще всего найти объём куба — это куб его стороны. Вот, оказывается, откуда берётся выражение «возвести в куб».
Объём параллелепипеда тоже легко найти. Надо просто перемножить длину, ширину и высоту.
Объём призмы — это произведение площади её основания на высоту. Если в основании треугольник — находите площадь треугольника. Если квадрат — ищите площадь квадрата. Напомним, что высота — это перпендикуляр к основаниям призмы.
Объём пирамиды — это треть произведения площади основания на высоту. Высота пирамиды — это перпендикуляр, проведенный из её вершины к основанию.
Некоторые задачи по стереометрии решаются вообще без формул! Например, эта.
Объём куба равен . Найдите объём четырёхугольной пирамиды, основанием которой является грань куба, а вершиной — центр куба.
Обойдёмся без формул! Просто посчитайте, сколько нужно таких четырёхугольных пирамидок, чтобы сложить из них этот куб 🙂
Очевидно, их 6, поскольку у куба 6 граней.
Иногда в задаче надо посчитать площадь поверхности куба или призмы.
Напомним, что площадь поверхности многогранника — это сумма площадей всех его граней.
В некоторых задачах каждое ребро многогранника увеличили, например, в три раза. Очевидно, что при этом площадь поверхности увеличится в девять раз, а объём — в раз.
Стереометрия — это просто! Для начала выучите формулы объёма и площади поверхности многогранников и тел вращения. А дальше — читайте о приемах решения задач по стереометрии.
Звоните нам: 8 (800) 775-06-82 (бесплатный звонок по России) +7 (495) 984-09-27 (бесплатный звонок по Москве)
Или нажмите на кнопку «Узнать больше», чтобы заполнить контактную форму. Мы обязательно Вам перезвоним.
Обучающее видео
БЕСПЛАТНО
Техническая поддержка:
help@ege-study.ru (круглосуточно)
Полный онлайн-курс подготовки к ЕГЭ по математике. Структурировано. Четко. Без воды. Сдай ЕГЭ на 100 баллов!
Для нормального функционирования и Вашего удобства, сайт использует файлы cookies. Это совершенно обычная практика.Продолжая использовать портал, Вы соглашаетесь с нашей Политикой конфиденциальности.
Все поля обязательны для заполнения
Вся часть 2 на ЕГЭ по математике, от задачи 13 до задачи 19. То, о чем не рассказывают даже ваши репетиторы. Все приемы решения задач части 2. Оформление задач на экзамене. Десятки реальных задач ЕГЭ, от простых до самых сложных.
Видеокурс «Премиум» состоит из 7 курсов для освоения части 2 ЕГЭ по математике (задачи 13-19). Длительность каждого курса — от 3,5 до 4,5 часов.
- Уравнения (задача 13)
- Стереометрия (задача 14)
- Неравенства (задача 15)
- Геометрия (задача 16)
- Финансовая математика (задача 17)
- Параметры (задача 18)
- Нестандартная задача на числа и их свойства (задача 19).
Здесь то, чего нет в учебниках. Чего вам не расскажут в школе. Приемы, методы и секреты решения задач части 2.
Каждая тема разобрана с нуля. Десятки специально подобранных задач, каждая из которых помогает понять «подводные камни» и хитрости решения. Автор видеокурса Премиум — репетитор-профессионал Анна Малкова.
Получи пятерку
Видеокурс «Получи пятерку» включает все темы, необходимые для успешной сдачи ЕГЭ по математике на 60-65 баллов. Полностью все задачи 1-13 Профильного ЕГЭ по математике. Подходит также для сдачи Базового ЕГЭ по математике. Если вы хотите сдать ЕГЭ на 90-100 баллов, вам надо решать часть 1 за 30 минут и без ошибок!
Курс подготовки к ЕГЭ для 10-11 класса, а также для преподавателей. Все необходимое, чтобы решить часть 1 ЕГЭ по математике (первые 12 задач) и задачу 13 (тригонометрия). А это более 70 баллов на ЕГЭ, и без них не обойтись ни стобалльнику, ни гуманитарию.
Вся необходимая теория. Быстрые способы решения, ловушки и секреты ЕГЭ. Разобраны все актуальные задания части 1 из Банка заданий ФИПИ. Курс полностью соответствует требованиям ЕГЭ-2018.
Курс содержит 5 больших тем, по 2,5 часа каждая. Каждая тема дается с нуля, просто и понятно.
Сотни заданий ЕГЭ. Текстовые задачи и теория вероятностей. Простые и легко запоминаемые алгоритмы решения задач. Геометрия. Теория, справочный материал, разбор всех типов заданий ЕГЭ. Стереометрия. Хитрые приемы решения, полезные шпаргалки, развитие пространственного воображения. Тригонометрия с нуля — до задачи 13. Понимание вместо зубрежки. Наглядное объяснение сложных понятий. Алгебра. Корни, степени и логарифмы, функция и производная. База для решения сложных задач 2 части ЕГЭ.
Сразу после оплаты вы получите ссылки на скачивание видеокурсов и уникальные ключи к ним.
Задачи комплекта «Математические тренинги — 2019» непростые. В каждой – интересные хитрости, «подводные камни», полезные секреты.
Варианты составлены так, чтобы охватить все возможные сложные задачи, как первой, так и второй части ЕГЭ по математике.
Как пользоваться?
- Не надо сразу просматривать задачи (и решения) всех вариантов. Такое читерство вам только помешает. Берите по одному! Задачи решайте по однойи старайтесь довести до ответа.
- Если почти ничего не получилось – начинать надо не с решения вариантов, а с изучения математики. Вам помогут книга для подготовки к ЕГЭи Годовой Онлайн-курс.
- Если вы правильно решили из первого варианта Маттренингов 5-7 задач – значит, знаний не хватает. Смотри пункт 1: Книгаи Годовой Онлайн-курс!
- Обязательно разберите правильные решения. Посмотрите видеоразбор – в нем тоже много полезного.
- Можно решать самостоятельно или вместе с друзьями. Или всем классом. А потом смотреть видеоразбор варианта.
Стоимость комплекта «Математические тренинги – 2019» — всего 1100 рублей. За 5 вариантов с решениями и видеоразбором каждого.
Это пробная версия онлайн курса по профильной математике.
Вы получите доступ к 3 темам, которые помогут понять принцип обучения, работу платформы и оценить ведущую курса Анну Малкову.
— 3 темы курса (из 50).
— Текстовый учебник с видеопримерами.
— Мастер-класс Анны Малковой.
— Тренажер для отработки задач.
Регистрируйтесь, это бесплатно!
Нажимая на кнопку, вы даете согласие на обработку своих персональных данных